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Figure 1: Examples of poses automatically recovered and augmented with a digital character using our method.

Abstract

We introduce AR Poser: a framework for posing with, or as a dig-
ital character. In this paper, we describe our first contribution to
AR Poser: a technique for digital characters to recognize and auto-
matically reproduce the same pose as a person in a picture (using
only RGB information from a mobile device). 3D human pose esti-
mation from RGB is an under-constrained and ambiguous problem
that remains today an active field of study. Instead of addressing the
general case of human pose estimation, we propose a solution that
can be tailored to a specific scenario—such as entertainment poses
for AR selfies. At the heart of our solution is a set of predefined
poses (selfie poses) utilized to reduce ambiguities. In a nutshell,
our method consists of two reliable steps: we first perform 2D pose
estimation, and then perform a projection onto the 3D subspace to
find the closest matching 3D pose. With our method, we are able to
automatically create augmented reality selfies for a variety of dif-
ferent poses.

Keywords: Augmented Reality, Pose Estimation, Intelligent Vir-
tual Characters.

Concepts:

1 Introduction

Digital augmentation of the real world opens new dimensions for
ideation, communication and entertainment. For example, facial
tracking combined with different mask overlays recently resulted
in highly entertaining and popular mobile applications. In the fu-
ture, we can imagine combining human shape estimation with digi-
tal character augmentation to unlock various entertaining selfie sce-
narios. Hence, we introduce AR Poser: a framework for posing with
or as a digital character. In this paper, we describe our first contribu-
tion to AR Poser: a technique for digital characters to automatically
reproduce the same pose as a person in a picture.

To automatically imitate the person’s pose with a 3D digital char-
acter, we need to estimate the 3D pose of the person from a single
monocular image (RGB). 3D human pose estimation from RGB is
an under-constrained and ambiguous problem that remains an ac-
tive field of study. Instead of addressing the general case of human
pose estimation, we propose a solution that can be tailored to a

specific scenario—such as poses AR selfies. At the heart of our so-
lution is a set of predefined poses (selfie poses) utilized to reduce
ambiguities associated with depth when estimating 3D poses. In a
nutshell, our approach consists of breaking down the problem into
two more reliable steps: first a 2D pose estimation, and then a pro-
jection onto our 3D subspace to find the closest matching 3D pose.
With our method, we were able to automatically create augmented
reality selfies for a variety of different poses.

2 Related Work

There has been several entertaining applications of people augmen-
tation in the recent years. Combining face tracking from RGB
images with different 3D masks is a famous example popularized
by the Snapchat app. In research, tremendous progress has been
made in estimating human poses and shapes from RGB images.
To our knowledge, no work has yet fully automatically augmented
people’s bodies. For example, clothes has been added to images
and video, but semi-automatically [Rogge et al. 2011; Rogge et al.
2014]. There has been manual augmentation, where the application
inserts a pre-defined character or object in the scene [Zünd et al.
2014] [McIntosh et al. ]. Zund et al. [Zünd et al. 2014] evaluated
different aspects of reality mixing techniques, and the McIntosh et
al. [McIntosh et al. ] created a magic bench where a character ap-
peared on the bench on a display in front of the bench, and the char-
acter interacts with the person. Recently, the idea of tracking real
world objects to interact with digital characters has been demon-
strated using pre-defined marker-based tracking for rigid localiza-
tion [Cimen et al. 2018]. To our knowledge, there has not yet been
a case of a person’s pose automatically estimated and augmented
with a digital character.

Estimating a 3D human pose skeleton from an image is a chal-
lenging problem due to the ambiguities associated to the depth pro-
jection, as well as the variations in human shapes. Using a depth
camera, methods have been proposed where a large data-set of 3D
skeleton poses and depth image pairs are created, to then regress a
model that maps depth images to 3D skeletons [?; Buys et al. 2014;
Zimmermann et al. 2018], resulting in popular products such as the
kinect.

Recently, researchers have experimented with a similar approach
but using only a single monocular RGB image [Mehta et al. 2017a;



Tomè et al. 2017; Martinez et al. 2017; Mehta et al. 2017b]. At
the heart of this approach is a human pose synthesis procedure that
can creates a large data-set of human poses with various textures,
from a which a model can be fitted. While it is showing promis-
ing results, it remains challenging to differentiate between different
human shapes and cover a wide range of poses.

We are not the first to consider breaking down the problem into a
first 2D pose estimation step, followed by a 3D re-construction step.
A large set of human captured motion can be used to faciliate con-
vergence to a natural 3D pose [Wang et al. 2014; Yasin et al. 2015;
Chen and Ramanan 2016]. Wang et al. [Wang et al. 2014] repre-
sented 3D poses as a linear combination of a sparse set of bases
learned from a large 3D pose dataset, and solve the 3D reconstruc-
tion as an optimization problem in the reduced space. Instead of
online optimization, Yasin et al, [Yasin et al. 2015] learned a direct
mapping off line from 2D to 3D poses, and applied it to the task of
3D pose retrieval. Our approach does not rely on a large data set.
A direct mapping blends between 2D skeletons as input and might
yield 3D poses with artiacts. Hence a direct optimization method
guarantees the 3D pose preserves its initial details. One additional
problem with large set of poses is that while they may contain a
variety of activities, they are complicated to gather and might not
contain the entertainment poses desired for the application. Our ap-
proach is technically most similar to [Chen and Ramanan 2016],
but depends only on a small set of poses, geared towards the appli-
cation.

Figure 2: From 2D pose estimation to 3D pose subspace and find-
ing optimal character pose.

3 2D Pose Estimation

We use a packaged solution (OpenPose) [Cao et al. 2017] to esti-
mate the 2D pose from the RGB image. The library is running deep
neural network that takes as input the RGB image, and returns a list
of joint positions yi together with a confidence value ci. For exam-
ple, a partially visible body will result in a low confidence value for
the joints outside the image. The neural network was trained over a
large data-set of hand-annotated images—each with the skeleton of
the people in the image.

The 2D skeleton has a set of joint names, that we associate to the
3D joints of our character, as shown in Fig.3. This map is defined
manually in our case, but could be done automatically given corre-
sponding T poses for example. With the 2D joint positions associ-
ated to 3D joints, we can proceed to the step of computing the best
matching 3D pose.

Figure 3: The 2D skeleton on the left is obtained from OpenPose.
It has 18 joints. On the right is the 3D character that we used in
our experiment. A common subset of joints need to be mapped for
the 3D pose matching process.

4 3D Pose Projection

We assume a small set of 3D poses, in our case entertaining selfies,
as shown in the results section. The way we project the 2D skeleton
onto the 3D pose space is via local optimization. For each pose
in the data base, we optimize for the rigid transformation that will
bring the 3D pose, closest to the 2D projected skeleton, in terms for
joint positions and bone direction similarity.

Formally, for each pose Xk = {xi}k defined as a set of joint po-
sitions xi, we optimize for a reduced rigid transformation M com-
posed of a rotation around the y axis Ry , and translations along the
x and z axises Tx, Tz—resulting in M = Ty Tx Ry and shown
in Fig.2—that minimizes the similarity cost between the 3D pro-
jected joint positions P M xi and the 2D joint positions yi, where
P is the view and projection transformation of the camera (see next
section for how we estimate the mobile camera’s parameters). Fi-
nally, we go through all the optimal transformations and poses pairs
< Xk,M >, and pick the one that has the smallest cost value, re-
sulting in the following optimization problem:

X∗,M∗ = argmin
<Xk,M>

min
M

∑
i

||yi − P M xi||2. (1)

We solve the internal optimization for the transformation M using
gradient-based optimization along numerical derivatives. This re-
quires initializing the 3D pose front facing the camera as to ensure
convergence towards a sensible solution.

We described how to match the 3D pose to the 2D skeleton, but
this depends on 3D camera parameters for the projection. Next we
describe how we estimate these for the mobile device given a know
a priori marker in the scene.

5 Augmentation and Mobile Setup

To incorporate a 3D character into the real world picture using a
mobile device, we need to estimate the camera parameters: a view
and perspective matrix. The perspective matrix is given by the
device, while we use marker-base technology (Vuforia) to recog-
nize and track the camera’s transformations. We print a real world
marker that is about the size of a person, and process the texture
for visual features. When the mobile device takes a picture, it con-
tains the marker, which is then used to estimate the orientation and
position of the camera.



The 3D character pose used in the optimization (section 4), is ini-
tialized to roughly fit inside the bounding box of the marker. The
optimization adjusts the character’s depth translation to match the
same size as the person’s 2D skeleton. If the character is to be
smaller, (e.g. a dwarf) we wait until the end of the optimization, to
scale the final 3D pose back to its original size.

Finally, the neural network we use in section 3 (OpenPose) to es-
timate the 2D pose of a person is sizable and runs optimally on a
graphics card. Deploying such a system on a mobile device repre-
sents a significant integration effort, and will suffer from a loss of
performance due to the difference in hardware. Our solution is to
place the 2D pose estimation “in the cloud”, and send messages be-
tween the mobile device taking pictures, and the 2D pose estimation
running on a server.

6 Results and Discussion

We designed a creative concept around Space Exploration that re-
sulted in 12 relevant poses. We started with a set of 10 poses, and
invited people to experimence the appplication. The subjects per-
formed poses we did not have, which we then crafted and included
in the dataset, removing the ones that were not relevant. After two
such iterations, we 12 relevant poses shown below.

The pictures were taken from a mobile device, sent to a server for
the 2D skeleton estimation (running OpenPose), and then the 3D
pose matching was performed on the mobile device. The whole
process took about 2 seconds.

6.1 Limitations

The sum of joint positions that we minimize is successful at match-
ing the shape of the character, but does not always succeed at find-
ing a perceptually similar size for the character. It can be seen in
our results that sometimes the character is larger than others. We
could fix this with a final pass that adjusts the size based on the
shoulder and feet proportions, which seem to be visually important.

Naturally, poses not present in the database fail to be discovered.
This is a limitation by design. Also, at the moment we only tackled
and demonstrated pose similarity for body joints—excluding the
face and the hands. In consequence, similar body poses that have
different hand gestures will fail to be discriminated. We think this
could be tackled with a 2 step matching where first the full body is
matched, then the different hand poses are considered.

7 Conclusion and Future Work

We proposed a practical approach to produce augmented reality
selfies with digital characters. It relies on a set of predefined poses
that are automatically selected and adjusted based on a 2D pose
estimate of the character. While a few minor improvements are re-
quired to match people of different sizes, it unlocks possibilities to
investigate new interactions not yet described in this paper. For ex-
ample, we have the digital character be worn as a suit by the person
in the picture—similar to augmenting clothes. We could estimate
the shape of the person from a humanoid and utilize this 3D ge-
ometry estimation to support partial occlusions as well as casting
approximate shadows from the subject to the character.
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